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ABSTRACT

We consider the one dimensional porous media problem ut - (u2 )xx

u(Ox) - u0(x), with initial data u0 compactly supported. We deduce a

coordinate transformation x - X(tp) which renders stationary the free

boundary separating (Ct,x): u(t,x) > 01 and {(tx): u(t,x) - 01. We

describe a simple difference scheme based on this transformation and show

that, even with a fairly crude mesh, the free boundary is tracked quite

accurately.
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SIGNIFICANCE AND EXPLANATION

L f

SWe consider the one-dimensional porous media problem ut  (U xx"

u(O,x) " u0 (x) for initial data,u 0 which vanishes outside a finite

interval. Solutions of this problem contain a free boundary separating

points (tx) with u(t,x) > 0 from those with u(tx) - 0. We deduce a

coordinate transformation x - X(t,p) which renders this free boundary

stationary in time. We describe a simple difference scheme based on this

transformation and show that, even with a fairly crude mesh, the free boundary

is tracked quite accurately.

Accessinn For

NTTS C I
DT! IC T.' '

D B st .-..

Avail I 1 e em-,3

Dist Spec itld

A

The responsibility for the wording and views expressed in this descriptive
sumary lies with MC, and not with the authors of this report.



A COkDINKTE TRANSFORMATION FOR THE POROUS
MEDIA EQUATION THAT RENDERS THE FREE-BOUNDARY STATIONARY

Morton 3. Gurtin, Richard C. MacCamy, and Eduardo A. Socolovsky

1. Introduction.

In this paper we study degenerate diffusion problems in which free

boundaries occur, our major objective being the development of numerical

procedures which effectively track these boundaries. For convenience, we

introduce our ideas in terms of the one-dimensional porous media problem;

generalizations are given at the end of Section 2 and in Section 4.

Consider the problem of determining u(t,x), t ) 0, x e R, such that

ut = (u2)xx

(P)
u(O,x) - u(X)

with initial data u0  supported on a finite interval:

u0 (x) > 0, -a < x < a
(1.1)

u 0 (x) - 0 otherwise

This is (a special case of) the porous media problem (cf., e.g., (1]). As is

known ([2- 61): there exists a unique weak solution u; at each t the

support of u is a finite interval

C_(t) < x < C(t)

inside its support u is smooth, but across (t), ux  is generally

discontinuous;

+1t1 -2Ux(t,it) (1.2)

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This
work was supported in part by the National Science Foundation under Grant Nos.
NCS-8001944 and MCS-8102380 and in part by the United States Army under
Contract No. DMAG29-S2-K-0002.
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There exist numerical procedures for Problem (P) (cf., e.g., [7 - 9]),

all of which seem to encounter some difficulty in tracking the free boundaries

x - r(t). The main feature of our method is the determination of a family of

curves

x = X(t,p), X(0,p) - p

along which the free boundary propagates:

(t) - X(t,±a) . (1.3)

Writing (P)I in the form of a mass balance law

Ut + (uv)x - 0 (1.4)

with u(t,x) a "density" and

v - -2ux  (1.5)

a "velocity* (cf., e.g., [10]), we see, using (1.2), that the free boundary

propagates with the velocity v(t,x) of the mediuml hence property (1.3) will

follow provided we take X(t,p) to be the solution of

Xt(tp) - v(tX(t,p)), X(0,p) - p . (1.6)

Within this context x - X(t,p) represents the motion of the medium with

material points labeled by their positions p at t - 0.

Using these ideas, we are able to reduce (P) to the following initial-

value problem for X:

X3X - 2uX - 2UX
p t Opp Op ((P)

X(0,p) - p

(Here and in what follows Xm , (X) .) The free boundary is then given byP p

(1.3), while U(t,p) - u(t,X(t,p)) satisfies

SU - X u0  (1.7)

a relation which expresses balance of mass in material oagrangian)

coordinates. Our procedure for solving consists in solving (P*) on the

fixed interval -a 4 p 4 a of support of u0 .

-2-



In Section 2 we establish a uniqueness theorem for (P*), and we show that

given a sufficiently regular solution X of this problem, (1.7) generates, at

least locally in time, a weak solution u of our original problem (P.

The determination of u(t,x) from U(t,p) requires that X(t,p), as a

function of p, be invertible at each t, a condition related to the non-

vanishing of X . We show, in Section 2, that X ) I for all time whenever

u; < 0 on its support, and that XP(ta), say, tends to zero in a finite

time T whenever u'{a) - 0, ua) 0 0. We show further that under the

latter two conditions X(t,a) - a for 0 C t < T, so that the free boundary

is vertical until t - T (cf. [6, 111). We also establish a growth estimate

for the L2(-a,a) norm of X (t,-).p

In Section 3 we describe a simple difference scheme for Problem (Pe) and

give some calculations which demonstrate the utility of our procedure in

particular, we show that even with a fairly crude mesh the free boundary is

tracked quite accurately.

While our paper is devoted to the one-dimensional porous media problem,

our method seems to have considerable generality: in Section 4 we derive the

analog of (P ) for the porous media problem in IPn in a future paper we will

discuss applications to more general equations and to Stefan problems.
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2. The initial-value problem for X(t,p).

We first proceed formally. Let u be a solution of (P) with initial

data u0  subject to (1.1), lot X(tp) be the solution of the initial-valuo

problem (1.6), and define

U(t,p) - u(tX(t,p)) (2.1)

or more generally, for any function f(t,x),

f (t,p) - f(t,X(t,p)) • (2.2)

Then by (1.4), (1.6), and (2.1),

Ut  (ut + uxv) -(Uvx)*. 'Pt -(V) *X,

so that

(UX - UtXp + UXpt - 0 (2.3)

But by (1.6)2,

V(Op) = u(Op) = Uo(p), Xp(Op) 1 u

hence
-1

U X u (2.4)

Further, by (2.1),
0

up (up ) lp

and (1.5), (1.6) yield

Xt M -2U X"1 . (2.5)
pp

Equations (2.4) and (2.5) form the basis of our method. It is these

equations that we will solve numerically in Section 3. Note that we can use

(2.4) to eliminate U from (2.5); this leads to the initial-value problem

(P) for X.

Our procedure for solving (P) is based on solving (P) for t ) 0 and

p in the fixed interval [-a,a], the support of u0 . (We will give a

uniqueness theorem to show that boundary conditions at p - ta are not

needed.) Let X be a solution of (Pe). Since X - 1 at t -0, there
P
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exists a T > 0 such that

X > 0 on [O,T) x [-a,a]P

Let

W - X(tta) ,

aT = {(t.x): _(t) < x < C+(t), 0 4 t < T1 .TI
Then for each t e 10,T) the mapping p * X(tp) is a bijection of [-a,a]

onto the interval CC (t),C+(t)]; letting P(t,x) be such that

X(t,P(tx)) - x

(i.e., P(te) is the inverse of X(t,o)), we define

= (U(t,P(t,x)), (t,x) e nT (2.6)

0, otherwise

with U given by (2.4). We then expect the resulting function u to be the

weak solution of (), We now show that this expectation Is indeed

justified. To avoid repeated hypotheses we assume, for the remainder of the

section, that

u 0 > 0 on (-a,a), u 0 - 0 otherwise, u0 e C(R) n C2 (-a,a) . (2.7)

Further, we will use the term solMtion of (P ) [ 0,T] for a solution X

on 1O,T) x [-a,a] with X, Xt, Xp, Xpp, Xtp , and Xppp continuous on

10,T) x [-aaJ] if, in addition, Xp > 0 on [OT) x [-a,a], then X is

Theorem I (Consistency). lt X be a regular solution of (P) on [0,T),

and let u be defined & (2.6). Then:

(i) u > 0 on T' u 0 otherwiseV

(ii) u(x,o) - u0 (x) for x e R1

! (~ill) ut M (u2l n T

(iv) W -(t) -2ux (to (t)) and iC (t) > 0 for t e (0,T).



Proof. Assertion i) follows from (2.4), (2.6), (2.7), and the

inequality Xp > O (ii) is a consequence of (2.6), (2.7), and the

identities P(O,x) - x, X(0,P) - 1.

Next, (P)1 and (2.4) imply (2.5) and (2.3), while (2.1) is a consequence

of (2.6). By (2.1) and (2.5),

Xt M -2(ux) Xtp W -2Xuxxl Xp (2.8)

where we have used the notation (2.2). Also,
Ut M (utl + (Uxl Xt lUt  2u 1

and hence (2.3) and (2.8)2 imply

2 *20 - Xp(u t - 2ux - 2uu x) Xp[ut -(U xx ]

since X > 0, we have (iii).

Equation (2.8)1 leads to the first of (iv). Finally, since

U0 (ta) - 0, (P) 1 implies

(t) - Xt(t,±a) - -2u(±a)x (t,±a) -2 (2.9)

but by (2.7), ±S (±a) < 0, and the remainder of (iv) follows. This

completes the proof.

Theorem 2 (Uniqueness). For any T > 0 there exists at most one regular

solution of (P) on [O,T).

Proof. Let X and Y be regular solutions on [0,T). Choose

te (0,T); it suffices to show that X - Y on 10,t 0 I x [-a,a]. By (P)1#

Xt M -(U X-2  SX -X
2 , Yt W -(U Y 2 ) - UO'Y-2

If we subtract these equations, multiply by X - Y, and integrate from

p - -a to p - a, we obtain, after an Integration by parts using

u0(a) - O,

I Id fa (- 2 4
2 dt -a

(2.10)

fa u (X-2  
-2 M2 )X Y )d.p f a -( 2  Y -2 )(X-Y)dp

-a 0p p p p- ;X

-6-



- M)(p Y) -- (X + Y )(z - yp)2 -2-2 C 0MP p p p p p p p p Yp
the f&ret t. on the right side of (2.10) is < 0. Next, letting

*-u;(Z + T )- 2 Y-2

we find that

-a u;(X 2  p- )(I-Y)dp - a j5  Y) ]~p

" - ) '_. 2 *p (x-Y)2 1a-p 4p + 'it (. -a

Since tu-l;a) ( 0, v have W(taet) 4 OY hence

C(X-Y) 2' , C 0

Further, as the solutions X and Y are both regular, Xp and Y. are

bounded away from zero on 1O,t 0 1 x [-a,a]p hence there Is a constant X

such that

lp I C
1*pI

on tO,t 0 ) x I-a,a).

Loet

9(t) - fa (X(t,p) - Y(t,p)]2 dp

and note that (0) - 0, since X and Y satisfy the same initial

condition. Thus if ve integrate (2-10) from 0 to t and use the above

remarks, we arrive at the Gronwall inequality

9(t) C K fo C(TcdT

for 0 4 t 4 to, which clearly implies X - Y on [O,to] x [-a,a).

Remark. We have not been able to establish (directly) existence for
I*

Problem (P ) We note that existence can be inferred from existence for (P)

in conjunction with (1.6).
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Thus far all of our results have been local, an the initial condition

X1 (O,p) - 1 only insures X > 0 for suff iciently small t!me. There are

situations in which we can give a global result.
1I

Theorem 3. Suppose that I < 0 on [-a,al. Let X be a solution oi

(?)M on 0,T). The X is regular; in facto X I on (-a,al x (0,T).

Prof we let Z - X and differentiate (Pe), with respect to p to

obtain

Z3zt M2u 0 Z - 6uZ 0Z + 6uZ - 2uZ *(2.11)
0p p op 0

At t -0 we have Z ,Z p- Z Pp-0; hence z t > at t -0 and Z> I

for small t. Suppose Z were ever equal to 1. Then there would be a first

time t1 e (0,T] at which this occurs and a point p1  with Z(t1 1p1 ) -1

If p e (-a,a), wewould have 2Z 0, z P )o0, and Z t cO

at (tp) which contradicts (2.11), since u;(p1 ) < 0. If p1 - -a,

then Z 0 and Z > 0 at (t1,p1 ), thus, since sa0(-a) = 0, uol(-a) > 0,

and u;(-a) < 0, we again contradict (2.11). A similar argument applies at

x - a.

For I1nitial data uowhich Is not concave one cannot expect to have

XI > 0 for all time. Knerr [6], generalizing results of Aronson (111, has

shown that if u;(b) - 0 for b - a, say, then the free boundary emanating

from a Is vertical for an interval 0OC t <T(< At t =T there insa

loss of smoothness and C + (t) begins to increase. We now show that this

phenomenon is related to the vanishing of Xi,.

Cf. Graveleau and Jamet 18), who show that if uo 'As concave, then the
solution u of (P will be concave for all time. With u C 0, (2.8)
clearly implies X > 1.



Theorem 4 (Breakdown). suppose that u;(b) -0 and u (b) > 0 for

b -- a or b -a, and pu

T - C6u;(b)] . (2.12)

Let X be a solution of P)on [0,T). Then

(i) X(t,b) E b for 0 4 t < Tr

(ii) X p(t,b) +0 as t +T.

if, inl addition, X is regular on [0,T) and u is definedk& (2.6), then

Uii) ux(t,x(t,b)) + -as t + T.

Proof. Let z(t) - yt,b). Since z(O) - 1, there Is a to such

that z(t) > 0 for 0 t < to 4 T. Thus, by (2.11), for 0 4 t < to,

z 2 z' -- 2u"(b) (2.13)
0

and

z 3(t) - 1I 6u;(b)t

Therefore, by continuity, ye may take to - T and (ii) follows. Moreover,

since z > 0 on (0,T), (P e) yields (i). Finally, by (2.8)2 and (2.13),

U x(t,x(t,b)) - uu(b)z(t)3

and (ii) Implies (iii).

under the hypotheses of Theorem 3 we have the following growth estimate

2
for the L norm of Xi,.

Theorem 5 (Stability). Suppose that u; < 0 on C-a,al, and ou

c - e~u;(-a) -uol(a)J. Let X be a solution of (P) on [0,T). Then

fa X2  t p dp (c
'-a p (pdp42+ t(2.14)

for 0 4 t < T.

-9-



Proof. Note first that, since U0 (ta) - O (') i

X (ta) - - 2u(ta)X2 (t,±a) ( (2.15)
t p

We multiply (P*)I by X-3X and integrate from p - -a to p - a. After anP PP

integration by parts and the use of (2.15) we obtain

Idfa -1a 3a -2 fa IM-1
... Ftija ~d- 21u~xp ]a 2 jfa u0X X dp+ 2 - u!(Xdp

2d ap U p -a -a Op p - a o pp

If we integrate the last term on the right by parts, we find that

~I a X 2dp + 21f: u X 3 X 2 dpf'__. ~X13 ':o -a P: 0;.

4 4u 1(-a)XI (t,-a) - % ,(a)Xp (t,a)

2

since u< 0, O(ja) < , and X ) 1. The estimate (2.14) follows upon

integration.

Observe that one obtains also the estimate

ft fa u0  dp dT , 2a + ct

in addition, since X -) 1, (1.3) and (2.15) yield the inequality

I (t)l 2 u(jalj

By (iv) of Theorem 1, tX(t,ta) > 0 hence for each t there is a p1

such that X(tpl) - 0. The standard argument

1

IX(t,p) - IfP X ,t,)dj 412a fa X2(t,)dj

and (2.14) therefore yield the estimate

IX(t,p)I -C 2a(2a + ct.

Thus the width of the support of u(ot) is at most O(t2 ).

mmmm . .-.0-
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Remark. Vasquez (121 has shown that this width is actually O(t 3 ) by

proving that u(t,x) is asymptotic to a certain "fundamental solutionu

u(t,x) of the form (3.5). Such fundamental solutions correspond to Dirac

distributions at t - 0 and as such the corresponding coordinate

transformation X(t,p) is not defined. If, however, one lets t 8 denote the
Aa

time for which the support of U(tae) has width 2a, and considers
Aa

u (t,x) - u(ta+tex) , then the corresponding coordinate transformation X soa a

well definedi in fact,

1

t +t3
X (t~p) - p

a
Guided by the results of (12], we conjecture that X(t,p) and X a(t,p) are

asymptotic as t + -.

Problem (P ) can be given a weak formulation, which we now deduce. We

begin by writing (P) 1 in the form

Xt  -(u 0X 2 )p - -a 2 •

If we multiply this equation and (P*)2 by an arbitrary C1 function w(p) and

integrate from p - -a to p - +a we obtain, after an integration of parts,

-a 2 )w X-2 ] dp
_at _(Xt + u;X 0 =

(2.16)

_faa(X(O' p )  - plw(p)dp = 0

Equations (2.16) constitute the desired weak formulation of (P*).

The weak form (2.16) admits an approximate formulation in terms of finite

elements. In this connection it is important to note that the absence of

boundary conditions allows one to operate in the space H I(-aa). We expect

these observations to be of great value in the extension to higher dimensions.

-11-



Remark.

1. 'The p - constant trajectories t'+ X(t,p) are analogs of

characteristic curves, as the degeneracy in the porous media equation (P)1

propagates along such trajectories. Indeed, this equation degenerates at

u -0 and u(t,X(t,p)) - 0 if and only if u (p) - 0

at learnt when the solution is regular (cf. (2.4)).

2. Problem (P) is a special case of the more general diffusion problem
Ut -q(u,ux)

(2.17)
u(x,0) - u 0(W

with (2.16) degenerate in the sense that( >0 for u> 0
k(UM~ -0 for u -0

As before, we seek curves x - X(t,p) along which this degeneracy propagates.

* Formally, such curves are generated, via (1.6), by writing (2.17), as a mass

balance law (1.4), since this law has the Lagrangian form

u(t,x(t,p)) - XItpu()

(cf. (1.7)). if we do this, we find that the resulting initial-value problem

for X(t,p) is:

X U

't U. 0 p p p p (.8

X(O'p) - p

As an example, the porous media equation is often considered in the, form

ut (,)XX ( o2

for this equation (2.18) 1 becomes

*-2
mt u u0

X s pI-

p

-12-



3. Numerical solutions.

Here we describe a simple difference scheme for the Initial-value problem

(P ). (We will actually work with (2.4), (2.5)I rather than (P*)1.) For

convenience, we assume that u0  Is symmetric: uo(x) - uo(-x). Then by

symetry we can restrict ourselves to 0 4 p C a provided we impose the

additional conditions

X(0,t) = 0, U p(0,t) 0 • (3.1)

We want to solve the equations

x t M -xplUp

p p
(3.2)

U M X-1u
p 0

We choose At > 0 and Ap - aN "1 for some integer N, Introduce the

mesh t L lAt, I - 0,1,2,..., pn nApr n m 0,1,...,N, and write f for
I n

the value of a function f at the mesh point (tirPn). We approximate (3.2)

by the difference scheme:

1+ 1-
n nM n U (3.3)

At Mi n
n n

In these formulae un - uO(pn), while Ln and Mn represent the spatial

difference operators

f fn+1 f fn-11 1 n 4 N I

Lnf - 2" fN-2 4fN-1' n N

0, n 0

(3.4)

f n+1 f n-11 1 n 4 N-

f 3f.- U + f n -.
n Uhp V N-i WN-2'

2f 1 ,l n - 0

-13-



The formulae (3.4) are accurate to O(Ap 2 ) for functions satisfying

(3.1) with U(ta) B 0. Since the method (3.3) Is partially explicit, ve

would expect it best to take At - (Ap) 2 with this choice we expect O(Ap )

accuracy.

The following explicit solution to the initial-value problem (P) - for

initial data a Dirac distribution - is given by Pattle [13]:

2fAt1[1 - -Y2] lyl C Xt)

u(x't) - X(t)
0, lyl ) X(t) (3.5)

1

y = x/x0, A(t) - (t/t 0 ) ,x 0 M r(5/2)//w - ,to M x 2/12

We attempted to approximate the solution u(t,x) - u(t+l,x). Thus we have

a - (12x 0 ) 1 / 3 
- 91/3. The results are presented in Tables I and 2.

In Table 1 we give the approximate and theoretical values of +(t),

together with the relative errors, for a sequence of times. These

calculations are performed with ten subdivisions, so that Ap - 0.208. We

observe that even with this fairly crude mesh the free boundary Is tracked

quite accurately. In Table 2 we present one of our calculations to determine

2the rate of convergence. The results confirm the expected rate of (Ap)

-14-
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Table I

C A(t) and C T(t), the approximate and theoretical positions of the right-

2
hand free boundary for Ap - 0.208, At - CAp)

t C A(t) C T(t) relative error

5.327 3.63826 3.63274 0.00152

9.653 4.43406 4.42904 0.00113

13.980 5.01550 5.01093 0.00091

18.307 5.48638 5.48218 0.00079

22.634 5.88782 5.88391 0.00063

26.960 6.24088 6.23721 0.00059

31.287 6.55793 6.55445 0.00053

35.614 6.84696 6.84365 0.00048

39.941 7.11343 7.11027 0.00044

44.267 7.36131 7.35827 0.00041

Table 2

C A(1.108) and C (1.108), the approximate and theoretical positions of the
right-hand free boundary at t - 1.108 for At - (Ap)2

A T

Ap C (1.108) C (1.08) error

0.1040042 2.152773 2.152531 0.000242

0.0520021 2. 152591 2. 152531 0.000060

0.0260011 2.152546 2.152531 0.000015

0.0130005 2. 152535 2. 152531 0.000004

Problem (P) with

Cos , xi
U0 x) - (3.6)

0, otherwise

is discussed by Aronson fill, who shows that the corresponding free boundaries

are vertical for an interval 0 1 t < T, a result consistent with the

conclusions of Theorem 4, where for (3.6),

-15-



T - (3v12) "1 ft.03377

We also performed a numerical experiment for the initial data (3.6)l the

results are shown in Table 3. It is seen that the free boundary is indeed

roughly vertical for t 4 T.

Table 3

CA (t) the approximate position of the right-hand free boundary for

2 wX 2
u(x) coo Here Ap - 0.025, At - (Ap).

t C(t)

0.00375 1.0000016

0.99750 1.0000039

0.01500 1.0000130

0.02000 1.0000293

0.02500 1.0000752

0.03000 1.0002330

0.03125 1.0003195

0.03250 1.0004445

0.03375 1.0006275

0.03500 1.0008996

0.03625 1.0013092

0.03750 1.0019303

, -16-



4. Wgension to iP.

The porous media problem in I? consists in finding a scalar function

u(t,M), t ) 0, L e se, such that

ut  (u) ,
(pn)

u(0,1) - u0 (L)
(Bero and in what follows A, div, and V, respectively, denote the

Laplacian, divergence, and gradient operators in In.)

Guided by our one-dimensional analysis, we rewrite (P.), as a balance

law

ut + dLv X(uV) - 0

with

v=-2VU u

and we take V(t,2 ) to be the solution of the inLtial-value problem
- V(t,(t,' 2 )), 1(0,2) - 2 (4.1)

Proceding as before, we define

U(t,) tX(t,))

and note thatI (4.2
t  (Ut + v u) - -(u dLvv) * (42)

Lot

and assuse that dot Z > 0. Then, using the identities (cf., e.g., [101, p.

77)

(det E)t M (dot Z)tr( -1 )

tr(ZI-Z) - (div v)

in conjunction with (4.2), we conclude that

(V dot t 0

-17-



and hence that

U - (dot Z)' I u0
On the other hand, by the chain-rule,

Thus, using (4.1), we arrive at the following initial-value problem for X:

VX --2VU, - (dot VI) - 0  , (P)

n
X(0,e) - 2

where V V.
2Q

A careful analysis of (P ) Is beyond the scope of this paper. Ourn

ultimate hope is to show that when

u 0 > 0 on A, u0 - 0 otherwise, (4.3)

with A compact and connected, Problem (Pn) reduces to solving (Pn) on then n
fixed region A for all time.

*

In view of (4.3), uo(p) 0 0 for 2 e 3A. Thus, by (P n),X (t,2) 0

at any 2 e 3A for which Vu0 (p) - 0, at least as long as the solution

remains regular.

Remarks.

1. The p - constant curves t w (tr) are analogs of bicharacteristic

curves in the theory of partial differential equations (cf. Remark 1 at the

end of Section 2).

2. For Problem (P ) with n ) 2, regularity of the free boundary F Is
n

essentially an open question (cf. (14]). The formulation (Pn) night be

useful in attacking this question, as

JF= -{x(t,p) : j2 e 3A, t 1 0)

Moreover, since regularity is a local question, the problem of proving that

(t,*) is a bijection is trivial: it follows, at least locally, from

1(0,j2) = 2, where we have chosen the time scale with t - 0 the time near

--- ___-is-



which regularity is sought.

3. For the more general equation

ut  (u') (a) 2)

the first of (Pn) I replaced by

VX7X - mum"2VU.

.- 19t

-1,



References

[1 L. A. Peletier, The porous media equation, Aplication of Nonlinear

Analysis in the Physical Sciences (eds. H. hmann, N. Bazley, K.

Xarchgassner) Pitman (1981) 229-241.

[2] 0. A. Oleinik, A. S. Kalishnikov and Y-L. Chzou, The Cauchy problem and

boundary value problems for equations of the type of non-stationary

filtration, Izv. Akad. Nauk SSR Ser. Hat. 22 (1958) 667-704.

(3] A. S. Kalishnikov, On the occurrence of singularities in the solutions

of the equation of nonstationary filtration, Vychislitel'noi Natematiki

i Matematicheskoi Fisiki, 7 (1967) 440-444.

(4] D. G. Aronson, Regularity properties of flows through porous media,

SIAM . Appl. Math. 17 (1969) 461-468.

(5] D. G. Aronson, Regularity properties of flows through porous media:

the interface, Arch. Rat. Mech. Anal. 37 (1970) 1-10.

(6] B. F. fnerr, The porous medium equation in one-dimension, Trans. Amer.

Math. Soc. 234 (1977) 381-415.

(7] E. Difenedetto and D. C. Hoff, An interface tracking algorithm for the

porous medium equation, Math. Reas. Center, Univ. of Wisconsi-, Tech.

Summary Report 1489 (1983).

[81 3. L. Gravelea and P. Jamet, A finite difference approach to some

degenerate nonlinear parabolic equations, SIAM 3. Appl. Math. 20 (1971)

199-223.

(91 M. Kimura and K. Tomoida, Numerical approximations for interface curves

to a porous media equation, To appear.

(10] M. Z. Gurtin, An Introduction to Continuum Mechanics, Academic Press

(1981).

-20-



I113 D. G. Aronson, Regularity properties of flows through porous meaia: A

counterexample. SIAM J. Apip. Math. 19 (1970) 299-307.

(121 J. L. Vazquez, Asymptotic behaviour and propagation properties of the

one-dimensional flow of a gas in a porous medium, Trans. Amer. Math.

Soc., 277 (1963) 507-528.

1131 R. 3. Pattle, Diffusion from an instantaneous point source with a

concentration dependent coefficient, Quart. J. Mech. Appl. Math., 12

(1959) 407-409.

(141 L. A. Caffarelli and A. Friedman, Regularity of the free boundary of a

gas flow in an n-dimensional porous medim, Indiana Univ. Math. 7. 29

(1980) 361-391.

-

-21-



SECURITY CLASSIFICATION OF THIS PAGE (Whon DOnt E.Ew.i

REPORT DOCUMENTATION PAGE BEFORE C0MPLKuNG FR
I. REPORT NUMBER 2. GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

#2560 AZ - ,q 32 F39

4. TITLE (and Subitle) S. TYPE OF REPORT A PERIOD COVERED

A Coordinate Transformation for the Porous Media Summary Report - no specific
Equation that Renders the Free-Boundary reporting period
Stationary S. PERFORMING ORG. REPORT NUMBER

7. AUTHOR() S. CONTRACT OR GRANT NUMBER(e)

Morton E. Gurtin, Richard C. MacCamy, DAAG29-82-K-0002
and Eduardo A. Socolovsky DAAG29-80-C-0041

MCS-8001944, MCS-8102380
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

Mathematics Research Center, University of AREA & WORK UNIT NUMBERS

610 Walnut Street Wisconsin Work Unit Number 1 -

Madison, Wisconsin 53706 Applied Analysis

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

August 1983
See Item 18 below IS. NUMBER OF PAGES

21
14. MONITORING AGENCY NAME & ADDRESS(If dlftemt ban Controlli Offie) IS. SECURITY CLASS. (of thi tepo)

UNCLASSIFIED

SC. ECLIASSo rlcAnON/ DOWN GRADING

IS. DISTRIMUTION STATEMENT (of thi Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of Ithe abstract ented In block 20. It dlifferent he Repo@t)

IS. SUPPLEMENTARY NOTES

U. S. Army Research Office National Science Foundation
P. 0. Box 12211 Washington, DC 20550
Research Triangle Park
North Carolina 27709

IS. KEY WORDS (Contlu. an teveseo aide it necesmy and Intilp by block mnhr)

Parabolic Equations, Porous Media, Free Boundaries

20. ABSTRACT (Contlumm a, revwee side It neceaemy mad deiui by block mbe,) 2
We consider the one dimensional porous media problem ut R (U2)x,

u(0,x) - u0 (x), with initial data u0 compactly supported. We deduce a
coordinate transformation x - X(t,p) which renders stationary the free
boundary separating {(t,x): u(t,x) > 01 and ((t,x): u(t,x) - 01. We
describe a simple difference scheme based on this transformation and show
that, even with a fairly crude mesh, the free boundary is tracked quite
accurately.

DO , FOM 1473 COITION OF I NOV 65 IS OBSOLETE UNCLASSIFIED

SECURITY CLASIFICATOR OF THIS PAGE (Whon Data ared)


